Supporting Information

Use of Selenium Bound Resin for the Solid Phase Synthesis of Substituted Isoxazolyl-Substituted (*E*)-Olefins

Xian Huang* and Wei-Ming Xu

Department of Chemistry, Zhejiang University (Campus Xixi), Hangzhou, 310028, P. R. China Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China

huangx@mail.hz.zj.cn

Contents:

- 1. Experimental section.
- 2. Characterization data of key compounds.
- 3. X-ray structure report.

1. Experimental section

The melting points were uncorrected. ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra were recorded on a Bruker Avance 400 spectrometer in CDCl₃ with TMS as the internal standard; chemical shifts were quoted in ppm and *J* values were given in Hz. IR spectra were recorded on a Bruker Vector 22 spectrometer. EIMS were run on a HP 5989B mass spectrometer. Elemental analysis was run on Thermofinnigan Flash EA 1112. HPLC were run on a Shimadzu LC-6A. X-ray was run on a Rigaku RAXIS-RAPID diffractometer.

Chromatographic conditions(HPLC)

Column: ODS 5µ 250X4 mm. Mobile phase: THF/MeOH/H₂O=51/17/32 (V/V).

Flow rate: 0.8mL/min. Detector: UV287nm.

Typical procedure for the preparation of isoxazole supported selenium resin 3:

To a suspension of the swellen polystyrene-supported selenenyl bromide (Br: 0.99mmol/g) resin 1 (2.5~g) in dry THF /DMF (V/V=5:1) (30~mL) was added NaBH₄ (5~mmol) under nitrogen atmosphere at $40^{\circ}C$. After stirring for 8 h at $40^{\circ}C$, propargyl bromide (5.5~mmol) was added dropwise under nitrogen atmosphere, and stirring for another 12 h. The resin 2 was collected by filtration, washed with THF ($20~mL\times2$), MeOH ($20~mL\times2$) and CH_2Cl_2 ($20~mL\times2$) and dried in vacuum. To a suspension of the swellen resin 2 (2.5g) in CH_2Cl_2 was added a mixture of hydroximoyl halide (7.5~mmol) in 10~mL CH_2Cl_2 (prepared from 7.5~mmol of aldoxime and 7.5~mmol of NCS stirring at r.t. for about 3 hours when use). A mixture of Et_3N (15~mmol) in 15~mL CH_2Cl_2 was slowly dropwised in 3 portions every 8 hours (each time 5 mmol in 5 mL dry CH_2Cl_2 was added). After stirring for 24 h at r.t., The resin 3 was collected by filtration, washed with THF ($20~mL\times2$), ether ($20~mL\times2$), THF/H₂O (3:1) ($20~mL\times2$), H₂O ($20~mL\times2$), THF ($20~mL\times2$), benzene ($20~mL\times2$), MeOH ($20~mL\times2$), and CH_2Cl_2 ($20~mL\times2$), and dried in vacuum.

Typical procedure for the preparation of 3-aryl-5-E-substituted-ethenyl isoxazoles (products 5a-5g):

To a suspension of the swellen resin 3 (0.5~g) in dry THF, cooled to -60° C, was added dropwise LDA (2M in THF/hexane, 0.3~mL) under nitrogen. After stirring for 1.5~h at -60° C, a solution of allyl bromide (2~mmol) in 1 mL of dry THF was added. The suspension was stirred for another 0.5~h at -60° C. Slowly warm up to -40° C in 0.5~h then quenched with 1 mL H_2O . The resin 4 was collected by filtration and washed with THF ($10~mL\times2$), THF/ H_2O (3:1) ($10~mL\times2$), H_2O ($10~mL\times2$), THF ($10~mL\times2$), and CH_2Cl_2 ($10~mL\times2$). The washed resin was suspended in THF (15~mL), to the mixture was added 30% ($10~mL\times2$) and stirred for 1 h at $10~mL\times2$ 0 minutes at room temperature. The mixture was filtered and the resin was washed with $10~mL\times2$). The filtrate was washed with $10~mL\times2$, dried over $10~mL\times2$ 1. The filtrate was washed with $10~mL\times2$ 1, dried over $10~mL\times2$ 1.

Typical procedure for the preparation of Isoxazolyl and Isoxazolinyl substituted (E)-olefins (products 8a-8k):

To a suspension of the swellen resin $\bf 6$ (0.5 g) in CH_2Cl_2 was added a mixture of hydroximoyl halide (1.5 mmol) in 10 mL CH_2Cl_2 (prepared from 1.5 mmol of aldoxime

and 1.5 mmol of NCS stirring at r.t. for about 3 hours when use). A mixture of Et_3N (3 mmol) in 15 mL CH_2Cl_2 was slowly dropwised in 3 portions every 8 hours (each time 1 mmol in 5 mL dry CH_2Cl_2 was added). After stirring for 24 h at r.t., The resin 7 was collected by filtration, washed with THF ($10 \text{ mL} \times 2$), ether ($10 \text{ mL} \times 2$), THF/H_2O (3:1) ($10 \text{ mL} \times 2$), H_2O ($10 \text{ mL} \times 2$), THF ($10 \text{ mL} \times 2$), benzene ($10 \text{ mL} \times 2$), MeOH ($10 \text{ mL} \times 2$), and CH_2Cl_2 ($10 \text{ mL} \times 2$), and dried in vacuum. The washed resin was suspended in THF (15 mL), to the mixture was added 30% ($10 \text{ mL} \times 2$) and stirred for 1 h at $10 \text{ mL} \times 2$ 0 minutes at room temperature. The mixture was filtered and the resin was washed with $10 \text{ mL} \times 2$ 1. The filtrate was washed with $10 \text{ mL} \times 2$ 1, dried over $10 \text{ mL} \times 2$ 1. The filtrate was washed with $10 \text{ mL} \times 2$ 1, dried over $10 \text{ mL} \times 2$ 1. The filtrate was washed with $10 \text{ mL} \times 2$ 1.

2. Characterization data of key compounds.

Purity and yield are determined by the crude product and NMR MS, FTIR and EA are determined by the purified product.

¹H NMR (400 MHz), ¹³C NMR (100 M Hz), MS, FTIR and EA of the products **5b**, **5c**, **5f**, **8c**, **8d**, **8j**, **8k**.

5b: 82.3mg, yellow low pointing solid; 1 H NMR (CDCl₃) δ 7.72 (2H, d, J= 8.2 Hz), 7.28 (2H, d, J= 8.2 Hz), 7.02 (1H, dd, J_{I} = 10.4 Hz, J_{2} = 15.6 Hz), 6.53-6.47 (3H, m), 5.53 (1H, d, J= 16.8 Hz), 5.17 (1H, d, J= 10.4 Hz), 2.43 (3H, s); 13 C NMR (CDCl₃) δ 168.9, 163.0, 140.5, 136.2, 135.8, 130.0, 127.1, 126.6, 122.4, 117.4, 99.9, 21.8; MS m/z 158(100), 211(M⁺); IR v_{max} (cm⁻¹) 3405, 3027, 1624, 1493, 1449, 967, 753, 692. Elemental analysis Calcd. for $C_{14}H_{13}NO$, C 79.59 %; H 6.20 %; N 6.63% Found C 79.38 %; H 6.29 %; N 6.72%.

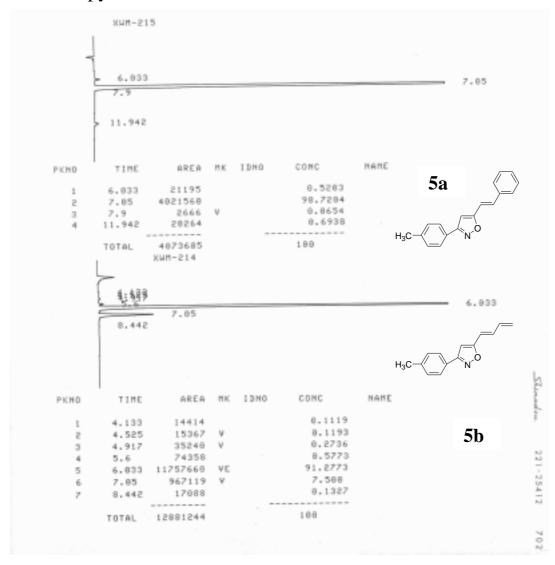
5c: 81.4mg, pale yellow solid, mp. 143-145°C; ¹H NMR (CDCl₃) δ 7.72 (2H, d, J= 7.6 Hz), 7.55 (1H, d, J= 16.0 Hz), 7.30 (2H, d, J= 7.6 Hz), 6.76 (1H, s), 6.68 (1H, d, J= 16.0 Hz), 3.86 (3H, s), 2.43 (3H, s); ¹³C NMR (CDCl₃) δ 166.6, 166.3, 163.3, 141.0, 130.1, 128.1, 127.1, 125.9, 123.7, 104.5, 52.5, 21.8; MS m/z 158(100), 243(M⁺); IR v_{max} (cm⁻¹) 1711.8, 1651.1, 1560.4, 1528.8, 1429.6, 1385.3, 1312.4, 1262.2, 1173.4, 972.8, 816.9. Elemental analysis Calcd. for $C_{14}H_{13}NO_{3}$, C 69.12 %; H 5.39 %; N 5.76% Found C 68.98

5f: 100.3mg, pale yellow solid, mp.76-78°C; ¹H NMR (CDCl₃) δ 7.69 (2H, d, J= 6.8 Hz), 7.30 (2H, d, J= 6.8 Hz), 6.65-6.59 (1H, m), 6.38 (1H, d, J= 16.0 Hz), 6.36 (1H, s), 1.97 (1H, d, J= 7.2 Hz); ¹³C NMR (CDCl₃) δ 169.8, 162.0, 134.5, 132.5, 128.7, 128.6, 124.5, 117.4, 97.9, 19.1; MS m/z 69(100), 264(97, M⁺), 266(94, M⁺+2); IR ν_{max} (cm⁻¹) 1666.5, 1593.9, 155.9, 1501.8, 1424.2, 1376.0, 961.8, 846.8, 813.8, 774.1, 505.2. Elemental analysis Calcd. for C₁₂H₁₀BrNO, C 54.57 %; H 3.82 %; N 5.30% Found C 54.70 %; H 3.70 %; N 5.42%.

8c: 147.1mg, yellow solid, mp. 177-179°C; ¹H NMR (CDCl₃) δ 7.68 (2H, d, J= 8.4 Hz), 7.59 (4H, dd, J_I = 6.0 Hz, J_2 = 8.4 Hz), 7.23 (2H, d, J= 8.4 Hz), 6.73 (1H, d, J= 16.0 Hz), 7.02 (1H, dd, J_I = 6.0 Hz, J_2 = 16.0 Hz), 6.50 (1H, s), 5.39-5.36 (1H, m), 3.63 (1H, dd, J_I = 10.8 Hz, J_2 = 16.4 Hz), 3.25 (1H, dd, J_I = 7.2 Hz, J_2 = 16.4 Hz), 2.40 (3H, s); ¹³C NMR (CDCl₃) δ 168.3, 162.2, 156.7, 141.1, 134.8, 132.6, 130.0, 128.7, 128.2, 127.1, 126.7, 124.8, 117.3, 100.5, 80.3, 41.5, 21.9; MS m/z 131(100), 408(M⁺-1), 410(M⁺+1); IR ν_{max} (cm⁻¹) 2916.7, 1608.2, 1596.1, 1561.4, 1430.4, 1366.2, 967.9, 899.1, 819.0, 803.8. Elemental analysis Calcd. for C₂₁H₁₇BrN₂O₂, C 61.63 %; H 4.19 %; N 6.84% Found C 61.77 %; H 4.07 %; N 6.72%.

8d: 118.2mg, yellow solid, mp. 133-134°C; ¹H NMR (CDCl₃) δ 7.78 (2H, m), 7.57 (2H, d, J = 8.0 Hz), 7.22 (2H, d, J = 8.0 Hz), 7.14 (2H, t, J = 8.4 Hz), 6.72 (1H, d, J = 16.0 Hz), 6.61 (1H, dd, J_I = 6.0 Hz, J_2 = 16.0 Hz), 6.47 (1H, s), 5.39-5.33 (1H, m), 3.63 (1H, dd, J_I = 11.2 Hz, J_2 = 16.4 Hz), 3.24 (1H, dd, J_I = 8.0 Hz, J_2 = 16.4 Hz), 2.38 (3H, s); ¹³C NMR (CDCl₃) δ 167.7, 163.7(J = 248.6 Hz), 161.8, 156.3, 140.7, 134.2, 129.5, 128.7(J = 8.1 Hz), 126.7, 126.3, 125.1(J = 2.4 Hz), 117.0, 116.0(J = 21.4 Hz), 110.1, 79.9, 41.0, 21.4; MS m/z 162(100), 348(M⁺); IR v_{max} (cm⁻¹) 2962.1, 1608.2, 1560.3, 1430.2, 1366.3, 966.9, 898.6, 831.2, 797.6. Elemental analysis Calcd. for $C_{21}H_{17}FN_2O_2$, C 72.40 %; H 4.92 %; N 8.04% Found C 72.20 %; H 4.80 %; N 8.14%.

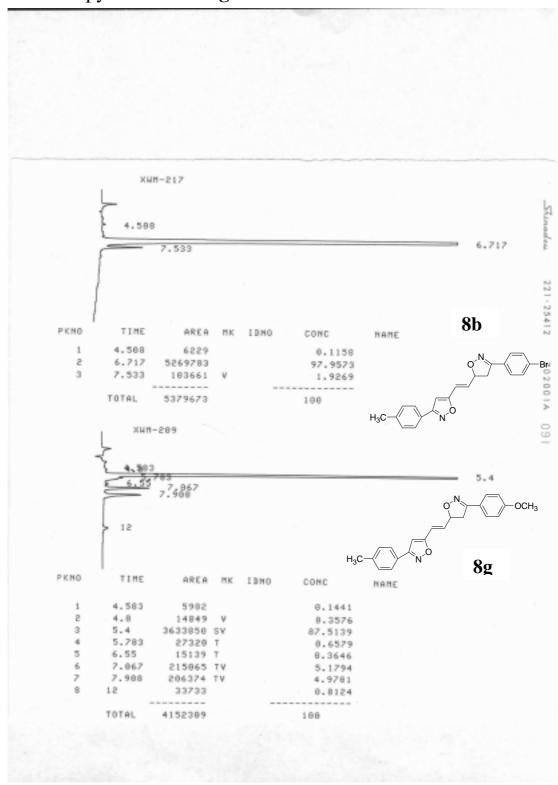
8j: 108.5mg, pale yellow solid, mp. 138-139 $^{\circ}$ C; 1 H NMR (CDCl₃) δ 7.78 (2H, m), 7.54

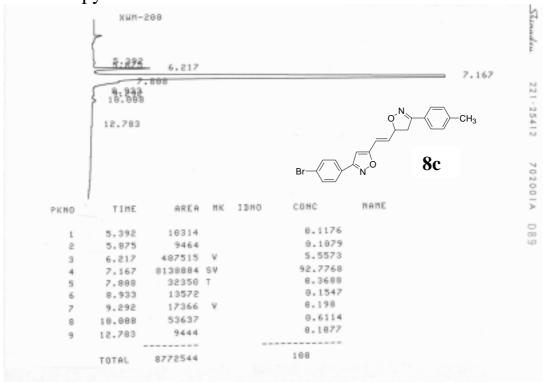

(2H, d, J= 8.2 Hz), 7.20 (2H, d, J= 8.2 Hz), 7.13 (2H, t, J= 8.4 Hz), 6.70 (1H, d, J=16.0 Hz), 6.67 (1H, d, J=16.0 Hz), 6.43 (1H, s), 3.36 (1H, d, J=16.4 Hz), 3.27 (1H, d, J=16.4 Hz), 2.37 (3H, s), 1.68 (3H, s); ¹³C NMR (CDCl₃) δ 168.0, 163.7(J= 249.1 Hz), 161.8, 156.2, 140.5, 138.6, 129.4, 128.7(J= 8.2 Hz), 126.7, 126.5, 125.2(J= 3.6 Hz), 116.0(J= 22.0 Hz), 114.2, 100.0, 85.5, 46.7, 25.4, 21.4; MS m/z 162(100), 362(M⁺); IR v_{max} (cm⁻¹) 2924.2, 1607.4, 1560.7, 1429.6, 1378.4, 1365.1, 964.7, 896.8, 832.0, 796.0; Elemental analysis Calcd. for $C_{22}H_{19}FN_2O_2$, C 72.91 %; H 5.28 %; N 7.73 % Found C 72.70 %; H 5.39 %; N 7.82%.

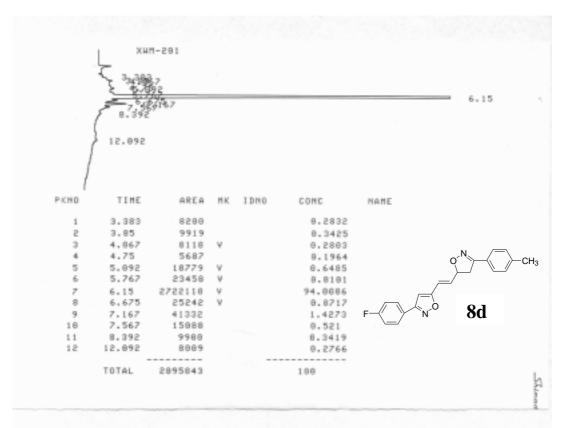
8k: 137.9mg, pale yellow solid, mp. 115-116°C; ¹H NMR (CDCl₃) δ 7.79-7.77 (2H, m), 7.59-7.54 (4H, m), 7.46-7.40 (6H, m), 7.21 (2H, d, J= 8.4 Hz), 6.92 (1H, d, J= 16.0 Hz), 6.69 (1H, d, J= 16.0 Hz), 6.48 (1H, s), 3.76 (2H, s), 2.38 (3H, s); ¹³C NMR (CDCl₃) δ 167.7, 162.7, 156.2, 141.7, 140.7, 137.8, 130.0, 129.5, 129.4, 128.9, 128.1, 126.7, 126.6, 126.4, 125.6, 115.2, 100.5, 89.2, 47.8, 21.4; MS m/z 143(100), 406(M⁺); IR ν_{max} (cm⁻¹)3024.1, 2924.2, 1599.1, 1560.3, 1430.7, 1366.6, 968.8, 900.4, 831.0, 801.8. Elemental analysis Calcd. for C₂₇H₂₂N₂O₂, C 79.78 %; H 5.46 %; N 6.89 % Found C 79.97 %; H 5.31 %; N 6.76 %.

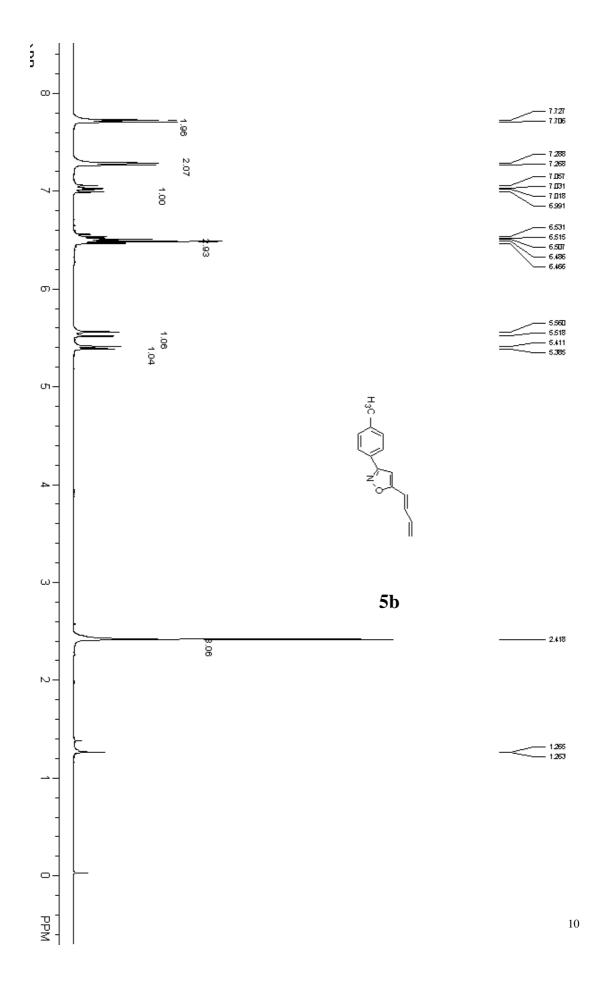
HPLC copys of **5a-b**, **8b-e**, **8g-h** (page 6-9).

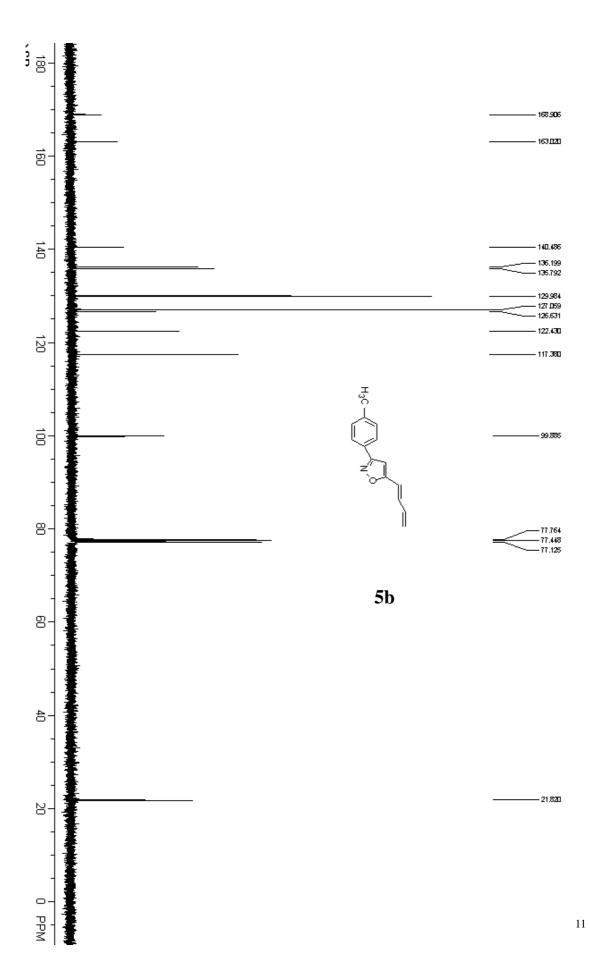
¹H, ¹³C NMR copys of **5a-c**, **8a**, **8c-f**, **8j-k** (page 10-29).

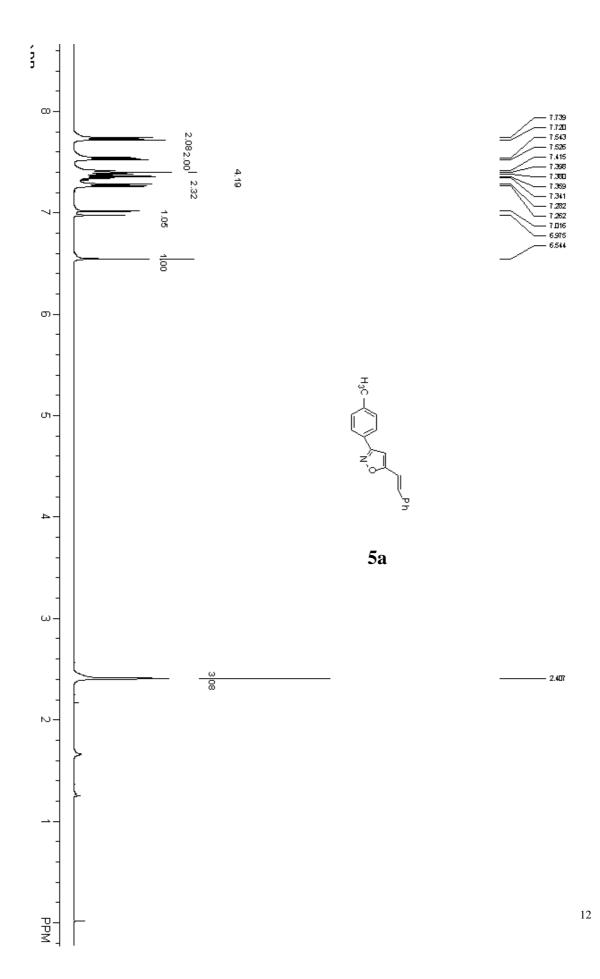

HPLC copys of 5a and 5b

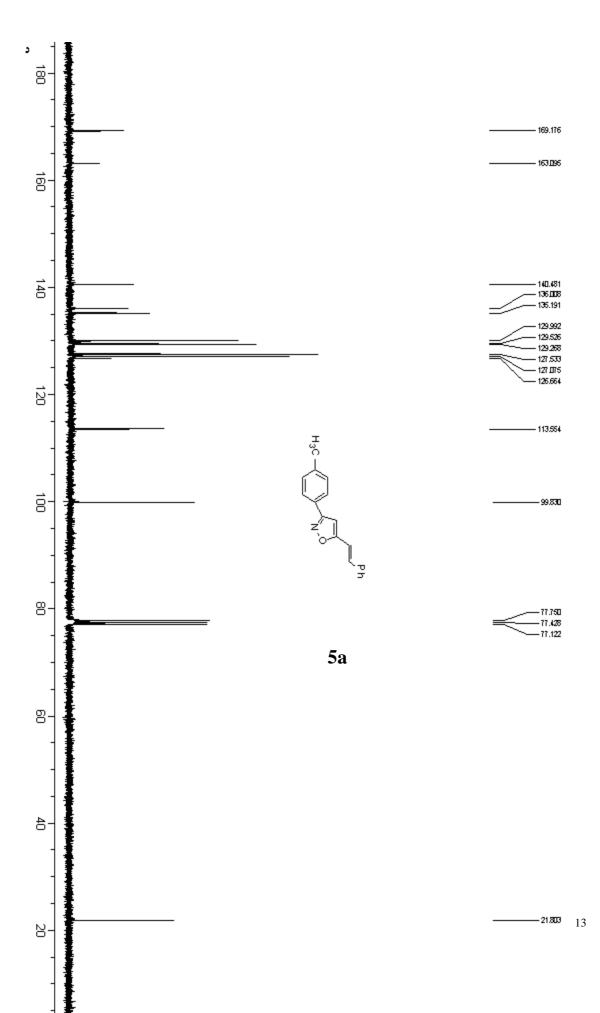

HPLC copys of 8h and 8e

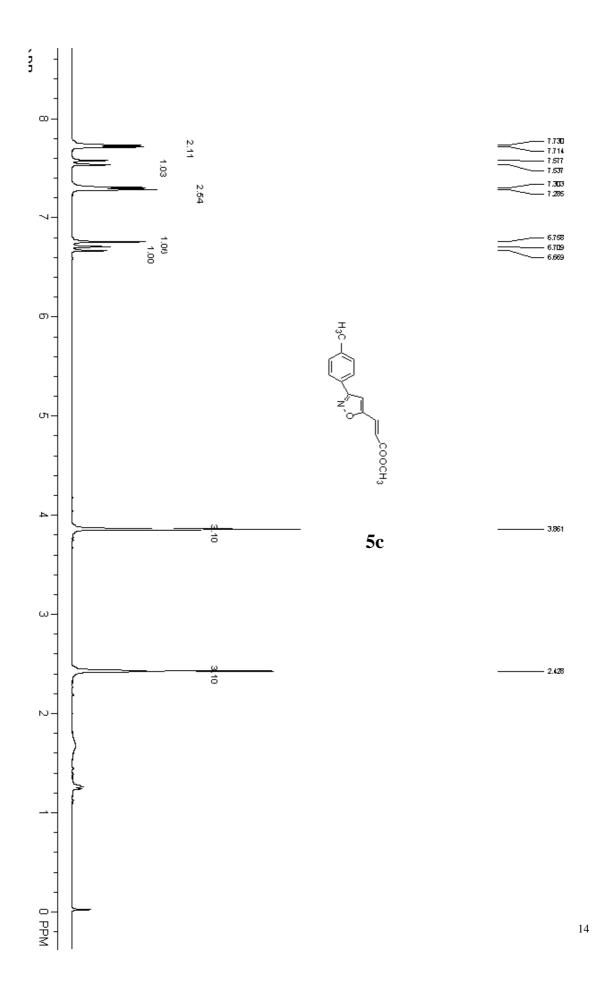

	_							
-	=							
	2 4:438							
	≥ 5₹£€\$	3						
	- 257	6.325						7.058
	8.675	7.046						
PKMO	TIME	AREA	ĦК	IDMO	CONC	NAME		
7 10	12112	HHEH	1110	2.0110	00110			
1	4.058	2798			0.0998			
8	4.192	12859	٧		0.4586			
3	4.475	4758	٧		8.1697			
4	4.683	11844	٧		0.4224			
5	5.033	56535	٧		8.9354			
6	5.225	13416	٧		0.4784			N. /=\
7	5.988	51861			1.8494		9	```\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
8	6.267	2631	y		0.0938		_/	
9	6.525	79398	٧		2.8314			
10	7.050	2467937	y		88.8879	a: /	<u> </u>	01
11 12	7.642 8.675	110196	v		3.9297	CI	, N	8h
16	0.673	20290	Y		8.7236			
	TOTAL	2884221			100			
	XWM-216							
	XWM-516							
	XHM-516							
	XHH-516	8 7						
	XHM-216	5.958						
	2 1/200 2 1/200 2 1/200	2						7.842
	E 9:200	8.717						7.842
	2 1/200 2 1/200 2 1/200	8.717						7.842
	9.917	8.717						7.842
	\$ 178 E 16.399	8.717						7.842
	9.917	8.717						7.842
	9.917	8.717						7.842
PKHO	9.917	8.717	MK	IDMO	COMC	HAME		
	9.917 12.975 13.433	2 8.717 AREA		IDNO		HAME		7.842 8e
1	9.917 12.975 13.433 TIME 4.05	2 8.717 AREA 3165	MK	IDMO	0.0618	HAME		
1 2	9.917 12.975 13.433 TIME 4.05 4.225	2 8.717 AREA 3165 6583	MK V	IDMO	0.0618 0.1269	HAME		8e
1 2 3	9.917 12.975 13.433 TIME 4.05 4.225 4.567	2 8.717 AREA 3165 6583 19982	MK V	IDMO	0.0618 0.1269 8.3884	HAME	O'	
1 2 3 4	9.917 12.975 13.433 TIME 4.05 4.225 4.567 4.767	2 8.717 AREA 3165 6583 19982 6684	MK V	IDMO	0.0618 0.1269 0.3884 0.1384	HAME	0	8e
1 2 3 4 5	9.917 12.975 13.433 TIME 4.05 4.225 4.567 4.767 5.208	2 8.717 AREA 3165 6583 19982 6684 7689	MK V	IDMO	0.0618 0.1269 8.3884 8.1384 6.1485	HAME		8e
1 2 3 4 5	9.917 12.975 13.433 TIME 4.05 4.225 4.567 4.767 5.208 5.958	2 8.717 AREA 3165 6583 19982 6684	MK V	IDMO	0.0618 0.1269 0.3884 0.1384	HAME		8e
1 2 3 4 5	9.917 12.975 13.433 TIME 4.05 4.225 4.567 4.767 5.208	AREA 3165 6583 19982 6684 7609 115869	MK V V	IDMO	0.0618 0.1269 8.3884 0.1384 0.1485 2.2611	H A ME	O N	8e
1 2 3 4 5 6	9.917 12.975 13.433 TIME 4.05 4.225 4.567 4.767 5.208 5.958 6.367	AREA 3165 6583 19982 6684 7689 115869 11797	MK V V	IDMO	0.0618 0.1269 8.3884 0.1384 0.1485 2.2611		O N	8e
1 2 3 4 5 6 7	9.917 12.975 13.433 TIME 4.05 4.225 4.567 4.767 5.208 5.958 6.367 6.992	2 8.717 AREA 3165 6583 19982 6684 7689 115869 11797 31661	MK V V	IDMO	0.0618 0.1269 8.3884 0.1384 0.1485 2.2611 8.2302 0.6178		O'N O	8e
1 2 3 4 5 6 7 8 9 10 11	9.917 12.975 13.433 TIME 4.05 4.225 4.567 4.767 5.208 5.958 6.367 6.992 7.842 8.717 9.917	2 8.717 AREA 3165 6583 19982 6684 7609 115869 11797 31661 4759766 88689 15887	MK V V	IDMO	0.0618 0.1269 8.3884 0.1384 0.1485 2.2611 8.2302 0.6178 92.8834 1.7307 0.31		O N	8e
1 2 3 4 5 6 7 8 9 10 11	9.917 12.975 13.433 TIME 4.05 4.225 4.567 4.767 5.208 5.958 6.367 6.367 6.392 7.842 8.717 9.917	2 8.717 AREA 3165 6583 19902 6604 7609 115869 11797 31661 4759766 80609 15887 8629	MK V V	IDMO	0.0618 0.1269 8.3884 0.1384 0.1485 2.2611 8.2302 0.6178 92.8834 1.7307 0.1684		O N	8e
1 2 3 4 5 6 7 8 9 10 11 12 13	9.917 12.975 13.433 TIME 4.05 4.225 4.567 4.767 5.208 5.958 6.367 6.992 7.842 8.717 9.917 11.9 12.175	2 8.717 AREA 3165 6583 19982 6684 7689 115869 11797 31661 475966 88689 15887 8629 14777	MK V V	IDMO	0.0618 0.1269 8.3884 0.1384 0.1485 2.2611 8.2302 0.6178 92.8834 1.7307 0.31 0.1684 0.2004		O N	8e
1 2 3 4 5 6 7 8 9 10 11	9.917 12.975 13.433 TIME 4.05 4.225 4.567 4.767 5.208 5.958 6.367 6.367 6.392 7.842 8.717 9.917	2 8.717 AREA 3165 6583 19902 6604 7609 115869 11797 31661 4759766 80609 15887 8629	MK V V	IDMO	0.0618 0.1269 8.3884 0.1384 0.1485 2.2611 8.2302 0.6178 92.8834 1.7307 0.1684		O N	8e
1 2 3 4 5 6 7 8 9 10 11 12 13	9.917 12.975 13.433 TIME 4.05 4.225 4.567 4.767 5.208 5.958 6.367 6.992 7.842 8.717 9.917 11.9 12.175	2 8.717 AREA 3165 6583 19982 6684 7689 115869 11797 31661 475966 88689 15887 8629 14777	MK V V	IDMO	0.0618 0.1269 8.3884 0.1384 0.1485 2.2611 8.2302 0.6178 92.8834 1.7307 0.31 0.1684 0.2004		O N	8e

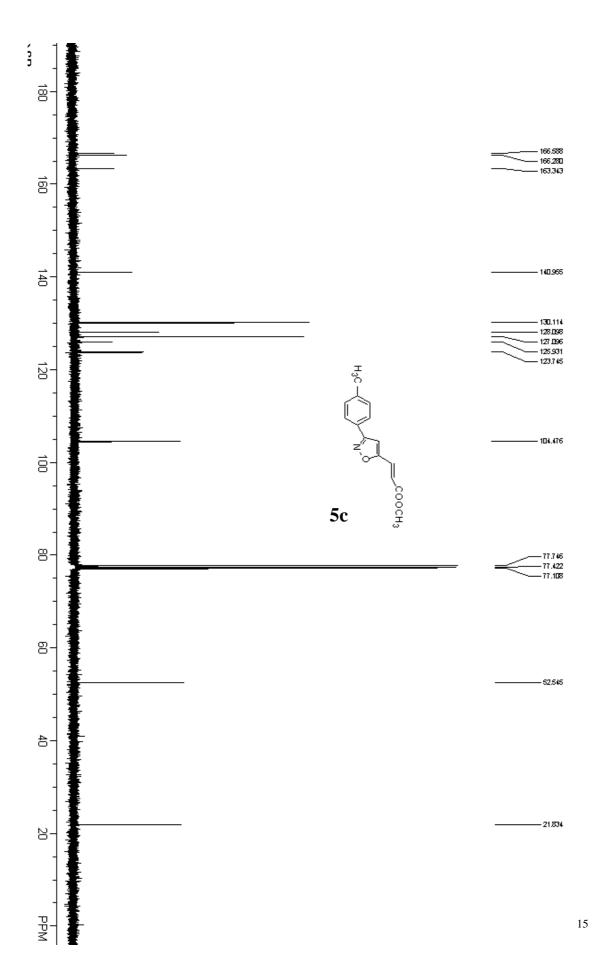

HPLC copys of 8b and 8g

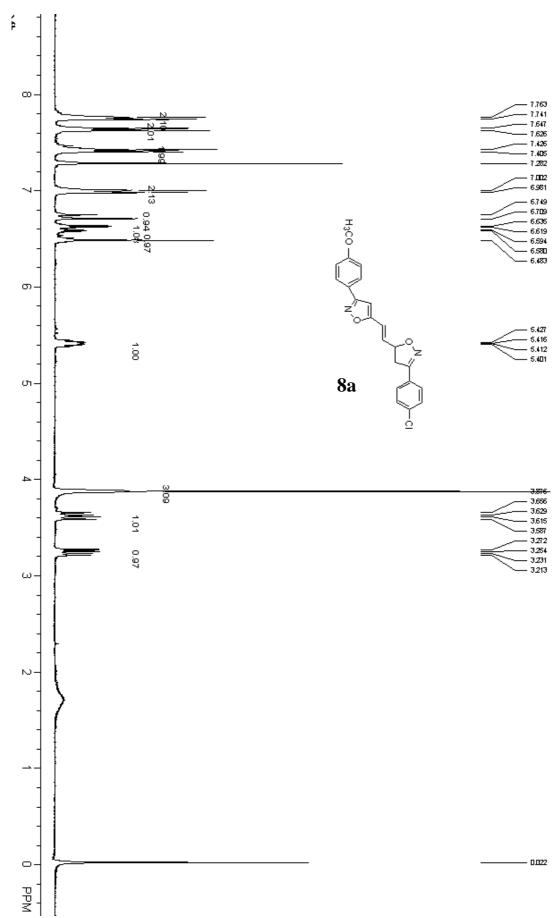


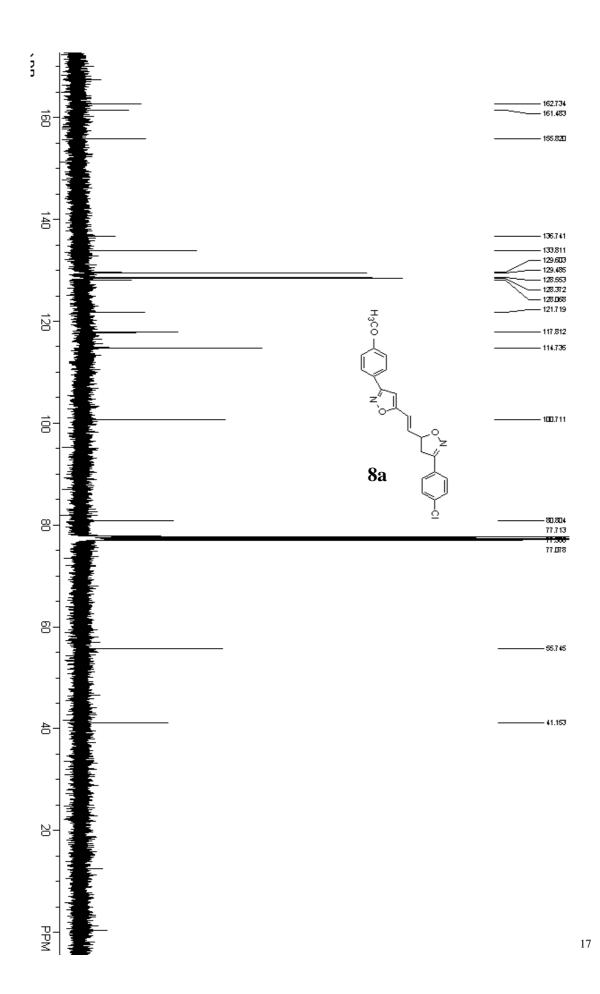

HPLC copys of 8c and 8d

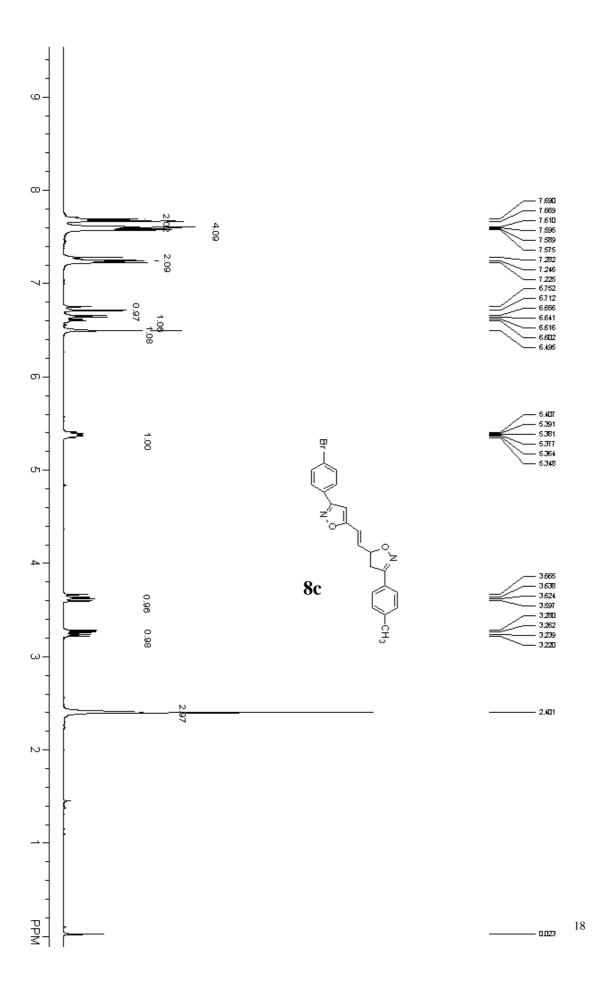


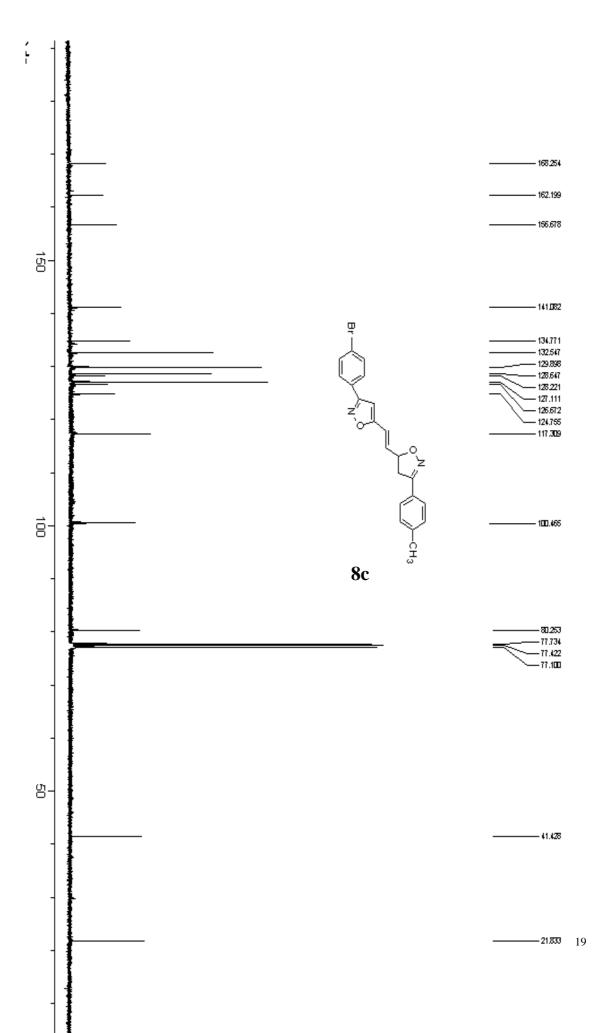


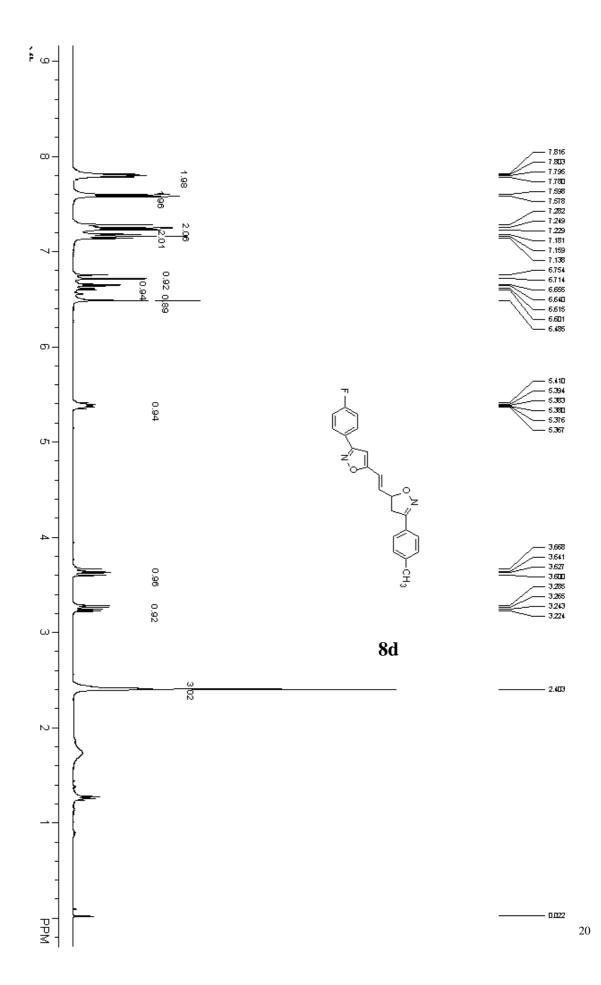


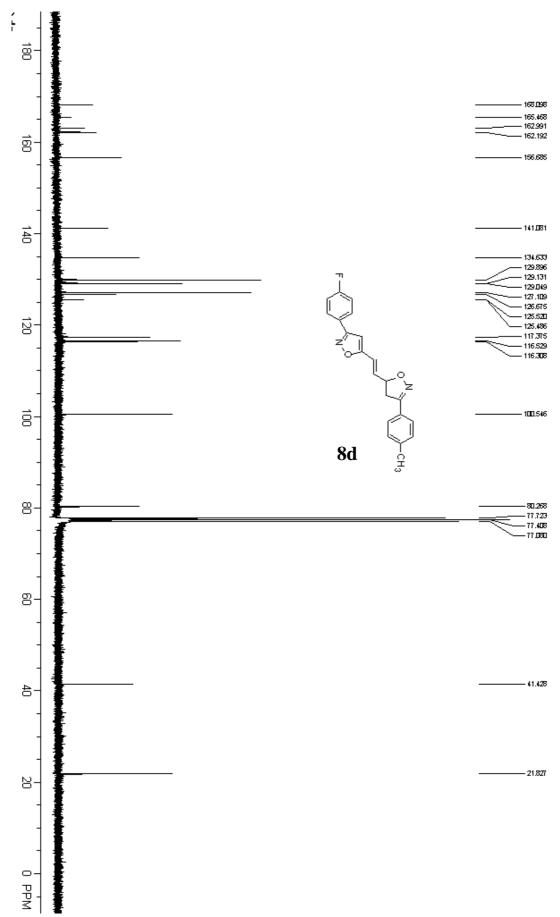


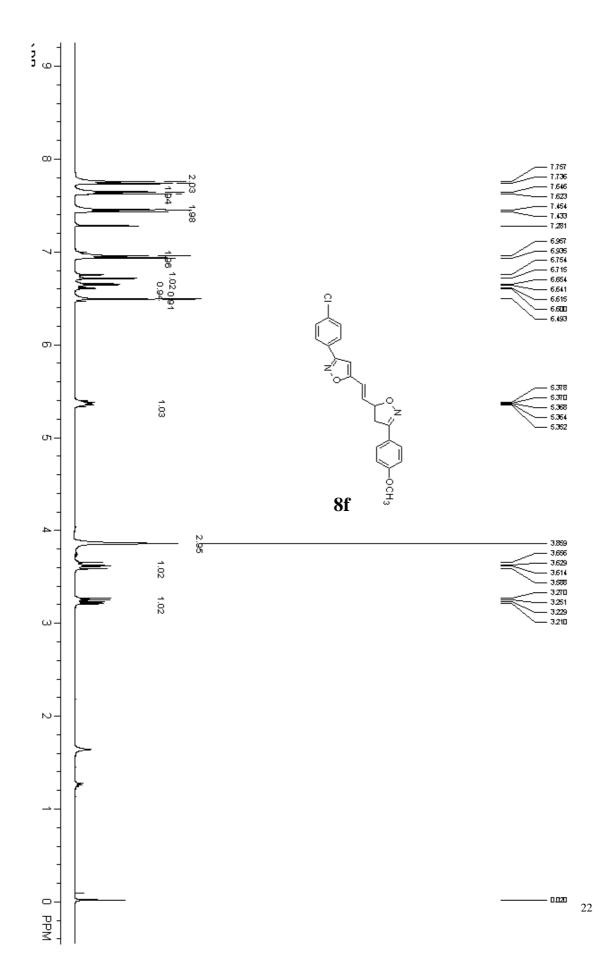


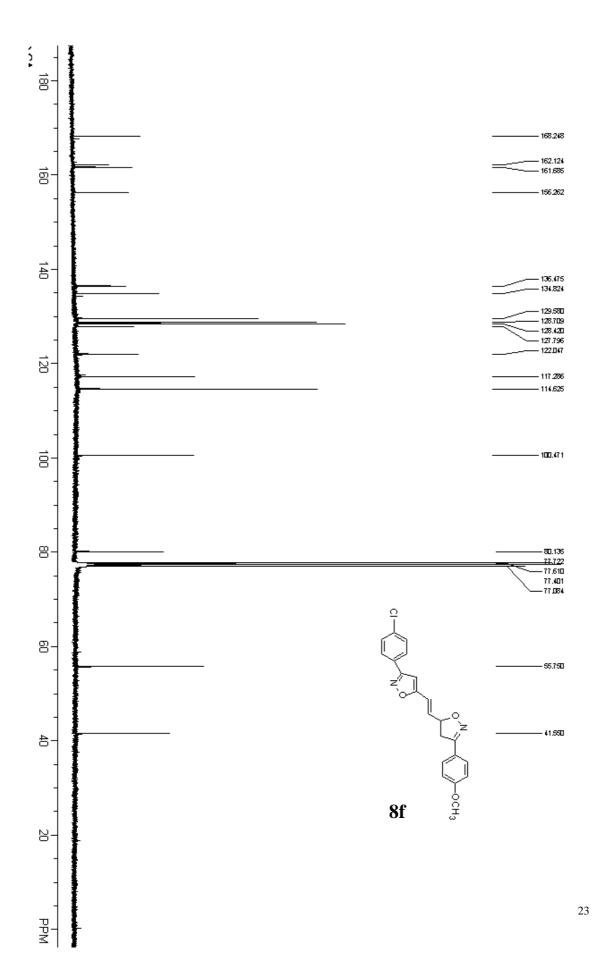


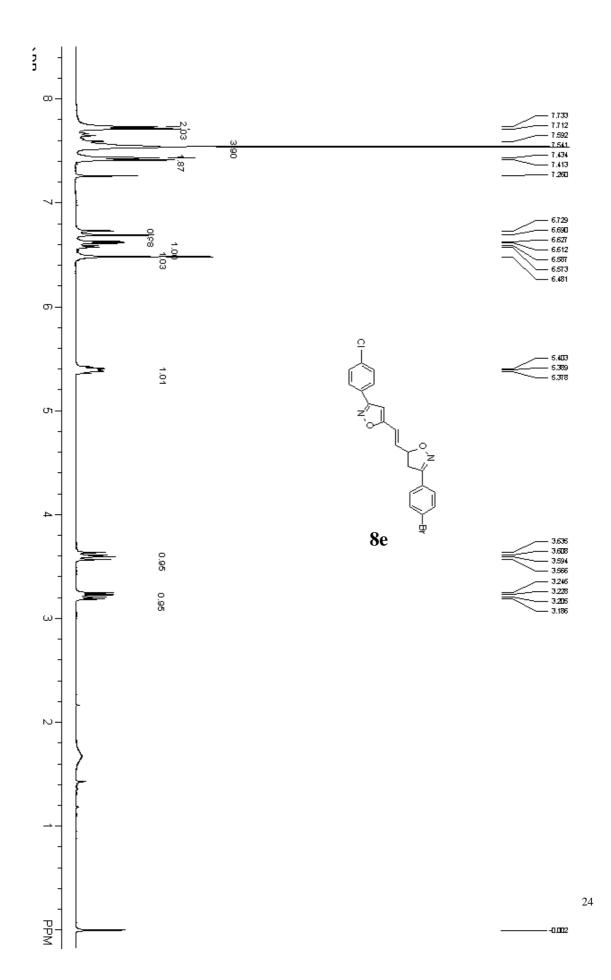


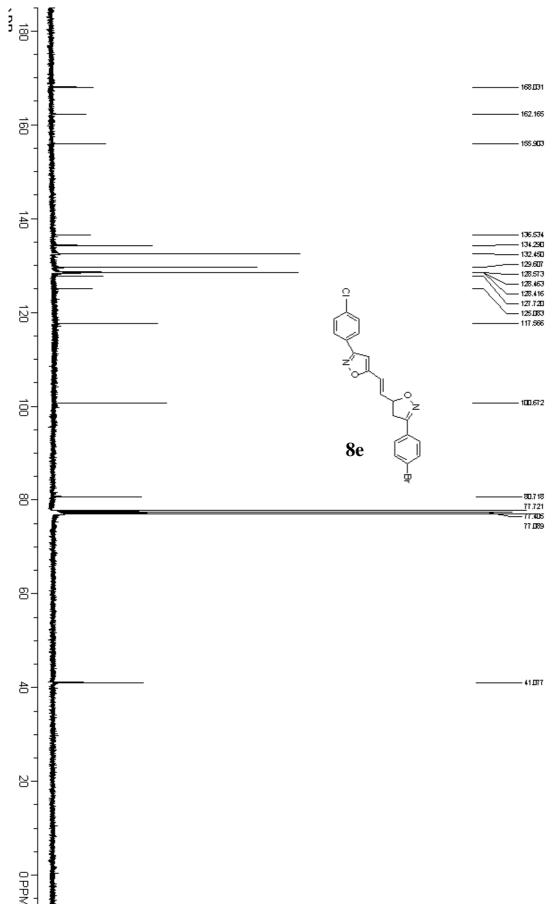


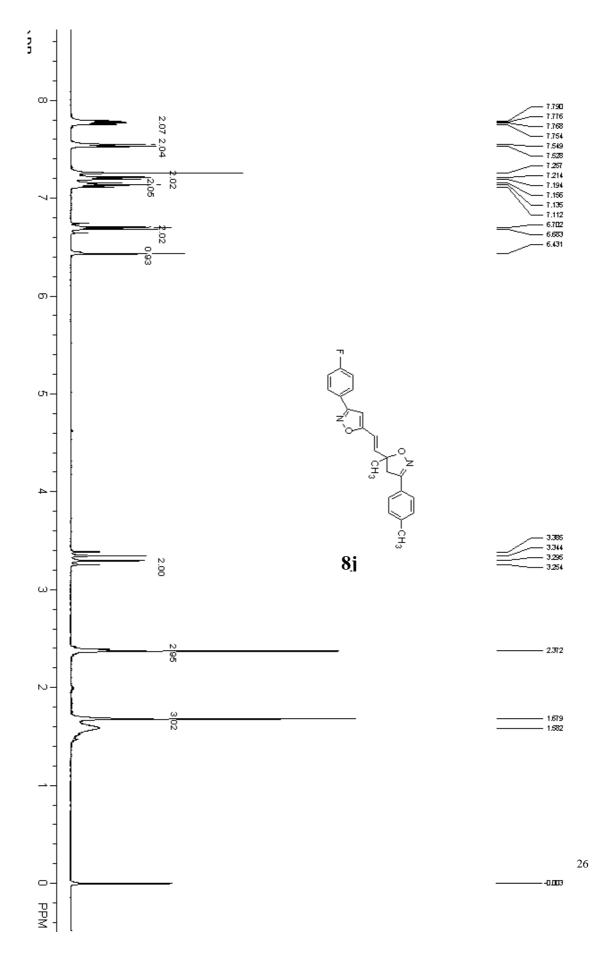


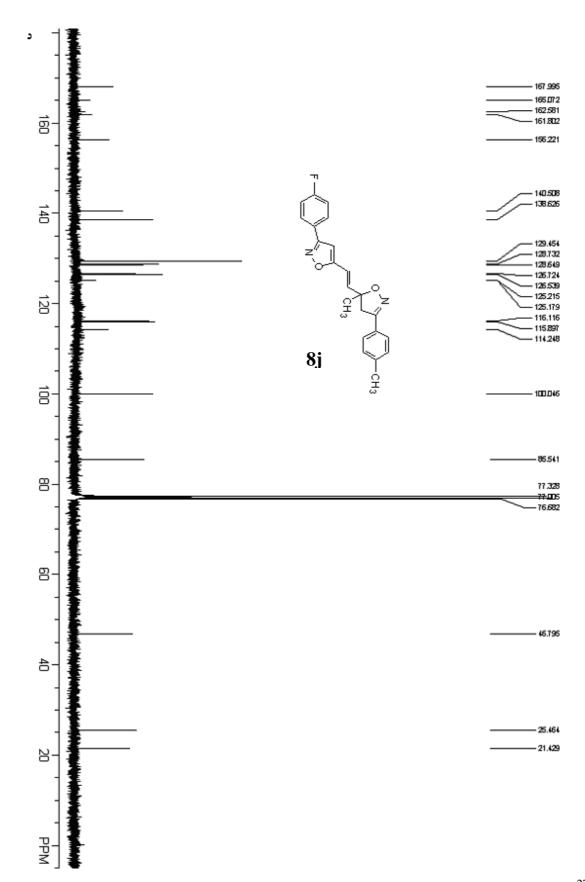


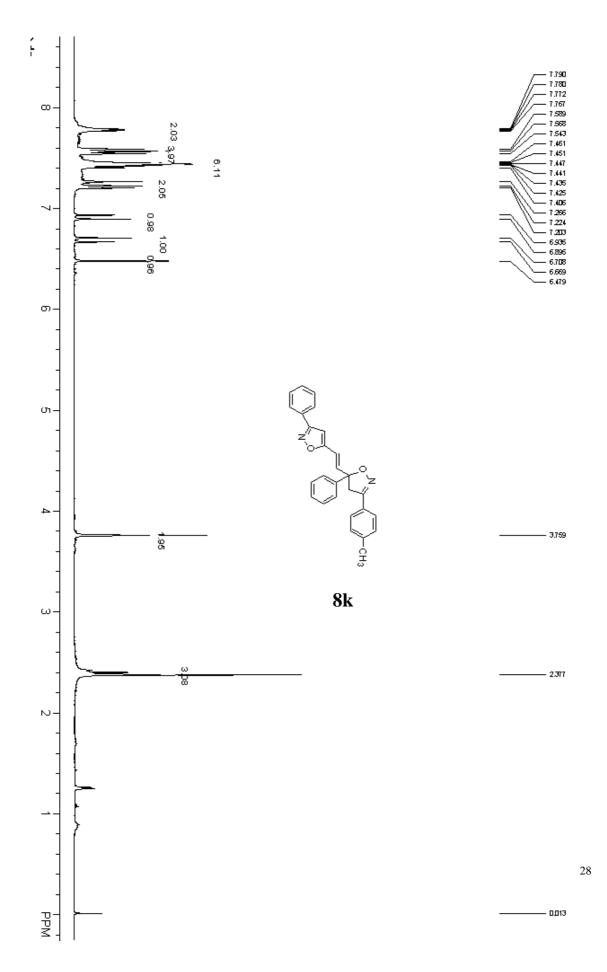


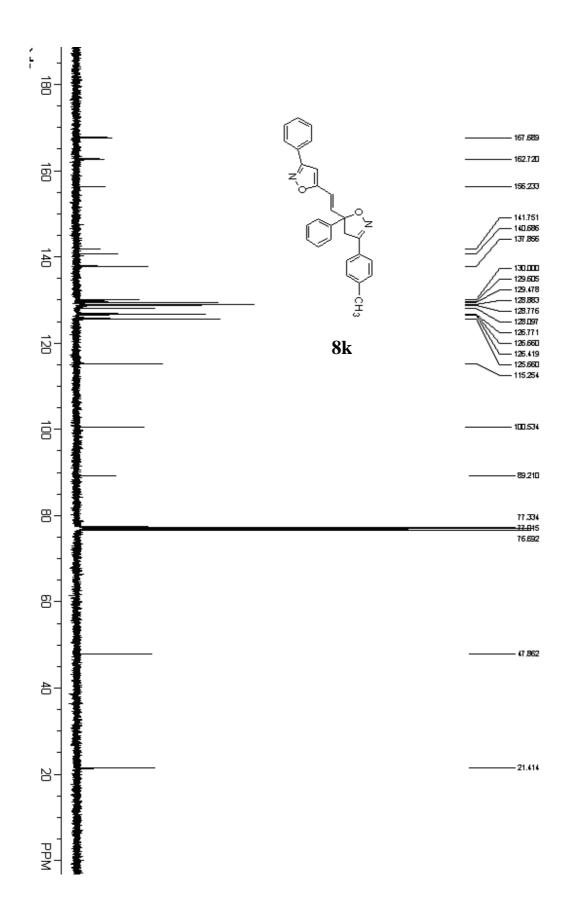


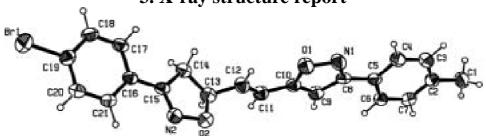












3. X-ray structure report

Crystal Data

Empirical Formula $C_{21}H_{17}N_2BrO_2$

Formula Weight 409.28

Crystal Color, Habit yellow, platelet

Crystal Dimensions 0.45 X 0.25 X 0.16 mm

Crystal System monoclinic

Lattice Type Primitive

Detector Position 127.40 mm

Pixel Size 0.100 mm

Space Group $P2_1/c$ (#14)

Z value 4

 D_{calc} 1.476 g/cm³

F₀₀₀ 832.00

Diffractometer Rigaku RAXIS-RAPID